PCB Prototype the Easy Way

Full feature custom PCB prototype service.

Selective laser melting (SLM)

Get a quote

Overview: How Selective laser melting (SLM) works?

What Is SLM?

Selective laser melting, or SLM, is a type of metal additive manufacturing or 3D printing. Often, the terms SLM and direct metal laser sintering (DMLS) are used interchangeably. However, the two technologies differ slightly, in that SLM melts pure metals while DMLS fuses metal alloys.

Main 3D Printing Technologies

SLM is one of the most exciting 3D printing technologies available today and is utilized both for rapid prototyping and mass production. The range of metal alloys available is fairly extensive. The end result has properties equivalent to those manufactured via traditional manufacturing processes.

SLM processes

SLM is very similar to SLS, and both processes are covered under the powder bed fusion umbrella. The major difference is the type of feedstock or powder it uses. While SLS uses mainly nylon (PA) polymer materials, SLM is specifically for metals. Nevertheless, the basic process is the same. As demonstrated in the image above, the laser sinters the powder together, layer-by-layer, until the model is complete. However, there is one big difference between SLM and SLS. Due to the constraints of the SLM process and the weight of the material, SLM requires support structures to be added to any overhanging features. This differs from SLS, where the surrounding powder material can provide enough support, allowing freeform shapes and features to be realized.

Diagram showing how SLM 3D printing works
Diagram showing how SLM 3D printing works. Source: Spilasers

The Process in Depth

An SLM machine has a chamber filled with metal powder. This metal powder is then spread across the substrate or build plate in very thin layers by a coater blade.

A high power laser then fuses a 2D slice of the part by selectively melting the powdered material. The build plate then drops down by the height of one layer, and the coater spreads another layer of fresh powder finely across the surface. The process is repeated until you have the finished part.

This whole process is performed in a controlled atmosphere inside the machine. Once the part is built, it can be removed from the machine. SLM parts need to be removed from the build plate, which is often done with a bandsaw. Then you need to remove the supports. As the support material is the same as the part material, this can be difficult and a time-consuming process.

The surface finish of the sintered parts is rough and, depending on your requirements, may need some post-processing. It is also common to machine parts to achieve fine tolerances and finish fine features, surfaces, and holes. Source:https://all3dp.com/2/selective-laser-melting-slm-3d-printing-simply-explained/

Features of SELECTIVE LASER MELTING (SLM) 3D printing service

Advantages

Large range of metals available

Ability to realize complex shapes or internal features (which would be incredibly difficult or expensive to achieve via traditional manufacturing)

Reduced lead times, due to no need for tooling

Part consolidation, allowing the production of multiple parts at the same time

Drawbacks

Expensive, especially if parts aren’t optimized or designed for the process

Specialized design and manufacturing skills and knowledge needed

Limited currently to relatively small parts

Rough surface finish

Lots of post-processing required

A Shiny Future

Despite its potential, SLM is only being utilized in a few industries. This is mostly due to the high cost of the equipment and the parts, as well as the post-processing requirements. The industries where it is most useful, as of now, include the following:

Medicine: patient-specific implants and other high-value medical device components
Automotive: high-speed prototyping and bespoke parts or low volume high-value applications
Aerospace: ducts and other parts
Tooling: conformal cooling channels in production tool inserts

Our SLM 3D printing service

Requirement Specification
Maximum build size 300 x 300 x 300 mm
Minimum wall thickness 1 mm
Dimensional accuracy L<100mm,±0.3mm. L>100mm,±0.3%*L(mm)

The table below depicts the general tolerances for industrial-grade SLM services. Stresses during the build, support strategy and other geometry considerations may cause deviation in tolerances and flatness. Improved tolerances may be possible with a manual quote review, after successful completion of a prototype build, and must be approved on a case-by-case basis.

Get an 3D Printing quote

Our standard surface finishes

Here is a list of standard surface finishes. For custom surface finishes such as electroplating or polishing, please contact 3dcnc@pcbway.com.

Spray painting

Get painted according to the color pattern provided by the customer (Including matte paint, high-gloss paint, electroplating-imitation paint, varnish, leather paint,etc).

Spray painting

Polished

The surface texture is polished in a variety of ways to meet the actual needs of customers. The transparent parts can be polished accordingly to improve transparency and light transmittance.

Polished

Electroplating

Provide electroplating services, improve the overall strength of the parts, provide metal-like surface texture, and make it have certain metal characteristics.

Metal plating

Inlay nut

At the specific bottom hole position that needs to be processed, the internal thread is processed.

Inlay nut

Glazing assembly

The surface of the part is glazed to better imitate the appearance of handicrafts. Have mature assembly experience to ensure the overall display of the product.

Glazing assembly

Reinforced coating

The unique outer coating processing ability improves the strength of the product structure, reduces external wear, and can better avoid damage caused by normal storage and use.

Reinforced coating

Testing Service

A variety of measuring equipment provides reasonable measure services according to the actual needs of customers.

Testing Service

Customer reviews about 3D printing Service